

22104

120 MINUTES

1	length associated with the particle is					g with a velocity 3.315×10^7 ms ⁻¹ . The wave				
	A)	$2x10^{-11}$ m			B)	3.315x	10 ⁻¹¹ m			
	C)	6.63x10 ⁻¹¹ m			D)	1x10 ⁻¹¹	m			
2.		$x \le a$, the norm	_						1	
	A)	$\frac{1}{a}$	B)	$\frac{1}{\sqrt{a}}$		C)	$\frac{1}{\sqrt{2a}}$	D)	$\frac{1}{2a}$	
3.		particle in a cub crate level?	oic box,	which o	of the fo	llowing	g energies repre	esents a	non-	
	A)	$\frac{6h^2}{8ma^2}$	B)	$\frac{11h^2}{8ma^2}$		C)	$\frac{12h^2}{8ma^2}$	D)	$\frac{14h^2}{8ma^2}$	
4.	Identif A)	by the correct of $NO^- > NO >$		-			given below: $NO^+ > NO^-$			
	C)	$NO^+ > NO$	> <i>NO</i> ⁻		D)	NO ⁻ >	$NO^+ > NO$			
5.	The term symbol of O_2 molecule is:									
	A)	$^{3}\Sigma_{u}^{-}$	B)	$^3\Sigma_g^-$		C)	$^3\Sigma_g^+$	D)	$^{3}\Sigma_{u}^{+}$	
6.	Identii 1. 3.	fy the correct s C ₄ is a cyclic S ₅ generates f	group		-	_	g: n abelian grou	р		
	A)	1 & 2 only	B)	1 & 3	only	C)	2 & 3 only	D)	1,2 & 3	
7.		of the followin H ₃ BO ₃								
	3. A)	ethane (stagge 1 & 2 only	B)	1 & 3	only	C)	2 & 3 only	D)	1,2 & 3	
8.	The win A) C)	dth of spectral molecular col uncertainty pr	lision	indepe	ndent of B) D)	Doppl	er effect on probability			

9. A part of the character table of the C_{3V} point group and a total representation are given below.

C _{3V}	E	2C ₃	$3\sigma_{V}$	
A_1	1	1	1	
A_2	1	1	-1	
E	2	-1	0	
Γ	9	3	-1	

The total representation is reduced as:

- $\Gamma = 3A_1 + 2A_2 + 2E$ A)
- $\Gamma = 2A_1 + 3A_2 + 2E$
- $\Gamma = A_1 + 2A_2 + 3E$ C)
- B) D) $\Gamma = 2A_1 + A_2 + 3E$

For a particular diatomic molecule, $\frac{kT}{hB} = 40$, the value of the rotational quantum 10. number with maximum population, J_{max} is:

- A) 2
- B)
- 4
- D) 5

Carbon dioxide molecule has four normal modes of vibration namely symmetric 11. stretching (v_1) , antisymmetric stretching (v_2) and a doubly degenerate bending (v_3) . Identify the correct statement among the following.

- v_1 is Raman active and v_2 and v_3 are infrared active. A)
- v_1 is infrared active and v_2 and v_3 are Raman active B)
- C) All the three are Raman active and none is infrared active
- D) v_1 and v_2 are Raman active and v_2 and v_3 are infrared active.

The fundamental band of a diatomic molecule is centred at $\overline{V}_0 = 2.880 \times 10^5 \, m^{-1}$. If the 12. rotational constant $\overline{B} = 1000 \, m^{-1}$, the frequencies of the first lines of the P and R branches respectively are

- $v_{p} = 2.87 \times 10^{5} \, m^{-1}; v_{p} = 2.89 \times 10^{5} \, m^{-1}$
- $v_{R} = 2.90 \times 10^{5} \, m^{-1}; v_{P} = 2.86 \times 10^{5} \, m^{-1}$ B)
- $V_R = 2.89 \times 10^5 \, m^{-1}; V_P = 2.87 \times 10^5 \, m^{-1}$
- $V_{p} = 2.86 \times 10^{5} \, m^{-1}; V_{p} = 2.90 \times 10^{5} \, m^{-1}$ D)

A Mossbauer nucleus in a coordination compound has spins of 3/2 and 5/2 in its 13. ground state and excited state respectively. If the nucleus is in the influence of an electric field gradient, the number of fine structure lines in its γ -ray spectrum will be

- A)
- B)
- C) 5
- D) 6

14.	Which of the following equations is correct?								
	A)	$\left(\frac{\partial T}{\partial P}\right)_{V} = \left(\frac{\partial V}{\partial S}\right)_{V}$	$\left(\frac{r}{S}\right)_T$		B)	$\left(\frac{\partial^2 G}{\partial P \partial T}\right)$	$\left(\frac{\partial H}{\partial P}\right)_{T}$		
	C)	$\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial V}{\partial T}\right)_{P}$	$\left(\frac{\partial S}{\partial P}\right)T$		D)	$\left(\frac{\partial^2 A}{\partial V \partial T}\right)$	$\left(\frac{\partial V}{\partial S}\right) = -\left(\frac{\partial V}{\partial S}\right)_{T}$		
15.		ree-component	system,	maxim	um nun	nber of p	phases that car	n coexis	t at
	equilib A)	orium is : 6	B)	5		C)	4	D)	3
16.	Match	List I containin	ng crysta	ıl types		ist II th	eir properties.		
	1 ~	List I ecular crystals alent crystals allic crystals c crystals		2. Goo 3. Very	d electr / low m	ical con	ductors only inductors in the docing points	solid sta	
	A) C)	a-2, b-4, c-1, c a-3, b-4, c-2, c	l-3 l-1				8, c-2, d-1 2, c-4, d-1		
17.	pressu	Helium gas effuses five times as fast as another gas A at the same temperature and pressure. The molecular mass of A is							
	A)	25	B) :	50		C)	75	D)	100
18.		lf-life of a reac lf. The reaction					ration is	reduced to	
	A)	zero order	B) :	first or	der	C)	second order	D)	third order
19.		MF of the cell,			_	–			
	$\left(\frac{\partial E}{\partial T}\right)_{I}$	$= -1.0 \times 10^{-3} V$	K^{-1} . Th	e value	es of Δ0	G and ΔS	S for the cell re	eaction	respectively
	are (Fa	araday Constant	t =96500	(C)					
	A) B)	290 kJ; -193 J 145 kJ; -193 J			B) D)	-145 kJ	; 193 J J; 193 J		
20.	,	contains certain	electrod	les and	,			Match l	List I with
		List I				List II			
		a. CuSO ₄ (aq)/ b. KCl(aq)Ago					mel electrode il ion electrode	2	
		c. KCl(aq)Hg ₂ d. Fe ²⁺ , Fe ³⁺ /P	$Cl_2(s), H$	Ig/Pt		3. Redo	ox electrode n reversible el		
	A) C)	a-2, b-1, c-4, c a-3, b-1, c-4, c			B) D)		4, c-1, d-3 3, c-4, d-1		

21.	Decomposition of $H_2SO_4(aq)$ occurs at a potential of 1.67 V. The reversible cell EMF of H_2 - O_2 cell is 1.24 V. The polarization voltage of H_2SO_4 is									
	A)	2.9 V	B)		V		0.43 V	D)	1.36 V	
22.	A com C ₁₆ H ₃₁	pact monolaye OH. The cross	r film o	of area 4 n of the a	50 m ² is	s produc molecu	ced by 7.20x10 le is (Avogadro	o ⁴ kg of o numbe	an alcohol, or is 6.0×10^{23})	
	A) C)	$2.5x10^{-19} \text{ m}^2$ $1.25x10^{-19} \text{ m}^2$			B) D)	2.5x10 1.25x1				
23.	 Mise Freu BET 	Ty the correct st celles are associandlich adsorpt Γ isotherm is apgmuir isotherm 1,2 & 3 only	ciated coniconiconiconiconiconiconiconiconiconi	olloids therm is e only to applica	o chemi ble to s	sorption	n	D)	1,3 & 4 only	
24.	The ion A)	n which will no NO_2^-	-	-		C)	Hg_2^{2+}	D)	IO_4^-	
25.	The get A) B) C) D)	eometry and the square planar, tetrahedral, sp square planar, tetrahedral, sp	, sp ³ d ² ; o ³ ; squar , sp ³ d ² ;	tetrahed re plana see-saw	lral, sp ³ r, dsp ² , sp ³ d	al atom	in XeF ₄ and S	F ₄ are		
26.	The nu A)	umber of S-S be two	onds in B)	Sulphur one	trioxid	e trimeı C)	r, S ₃ O ₉ is zero	D)	three	
27.	The int A)	terhalogen that ClBr ₃	will no B)	ot be for BrF ₅	med is:	C)	IF ₇	D)	ICl	
28.	Jahn-T A)	Teller distortion d ⁹ , d ⁴ (high sp		octahedr	al field B)		oited by d-orbit (low spin)	al config	gurations	
	C)	d^8 , d^9			D)	d ⁶ (lov	v spin), d ⁵ (hig	h spin)		
29.		orrect order of it ps with orbital H ₂ S <nh<sub>3<ph< td=""><td>of hydr</td><td>_</td><td></td><td>H_3 and I</td><td></td><td>atom w</td><td>hich</td></ph<></nh<sub>	of hydr	_		H_3 and I		atom w	hich	
	C)	NH ₃ <ph<sub>3<h< td=""><td>$_{2}S$</td><td></td><td>D)</td><td>$H_2S < P$</td><td>$^{\circ}\text{H}_{3}$<$^{\circ}\text{NH}_{3}$</td><td></td><td></td></h<></ph<sub>	$_{2}S$		D)	$H_2S < P$	$^{\circ}\text{H}_{3}$ < $^{\circ}\text{NH}_{3}$			
30.	Based A)	on isolobal con [Ru ₄ (CO) ₁₃] ²⁻		ne organ	nometall	lic corre		/clobuta	ne is	
	C)	$[\text{Co}_4(\text{CO})_{12}]$			D)	-	CO) ₁₄] ²⁻			

31.	Match	the organomet List I	tallics in	n List I	with the	-	sses given in Li	ist II	
		$Ph_3)_3RhCl]$ $h(CO)_2I_2]$			1. Hyd 2. Wa	droform cker pro	nylation ocess process		
	_	Co(CO) ₄]				drogena	•		
	A)	a-1, b-3, c-4, a-4, b-3, c-1,			J	B) D)	a-4, b-3, c-2,		
32.		orrect order of tency is:	_			the incr	reasing order of	°C-O st	retching
	A)	$[V(CO)_6]$ < $[CO]_6$	$Cr(CO)_6$]<[Mn(0	$[CO)_6]^+$				
	B)	$[V(CO)_6] < [M$	In(CO)	₆]+<[Cr	$(CO)_6$				
	C)	$[Mn(CO)_6]^+ <$	[Cr(C)0	O) ₆]<[V	$(CO)_6$				
	D)	$[Mn(CO)_6]^+ <$	[V(CO)) ₆] ⁻ <[Cr((CO) ₆]				
33.	be for	omplex [PtClBi med from [PtC de ions?							
	A)		B)	Br̄, py	y, NH ₃	C)	Br̄, NH ₃ , py	D)	NH ₃ , Br ⁻ , py
34.	The n A)	netal ion presen Zn ²⁺	t in the B)	enzyme Fe ²⁺	carbox	xy pepti C)	dase A is Mo ³⁺	D)	$\mathrm{Mg}^{2^{+}}$
35.		L of 0.1 M Moh on in acid medi				-	•		dichromate
	A)	0.033	B)	0.016		C)	0.1	D)	0.05
36.	Instab A) C)	polarography electrogravim		l comple	exes can B) D)	coulo	•	ns	
37.	Match	n the thermo and	alytical	method	given	in List l	I with the thern	nogram	given in
	LISUI	1. List I					List II		
	b. De	ermogravimetric rivative thermogerential thermal	gravime	etric ana	lysis (I	OTG)	 ΔT versus Weight ver Temperatu 	sus ten	nperature
	d. The	ermometric titra	itions				4. $\frac{dw}{dt}$ versus	temper	rature
	A) C)	a-2, b-1, c-4, a-4, b-2, c-3,				B) D)	a-2, b-4, c-1, a-1,b-3,c-2,d-	d-3	
38.	Retard A) B) C) D)	dation factor R _F ion-exchange partition chro thin layer chro HPLC	chroma matogra	atograph aphy	ny				

39. The styx number of a borane is 3203. Total number of 3c-2e bonds present in it are

D)

- A) 3
- B) 2
- C) 5
- D) 8

40. In the reactions,

Reagents A and B are respectively,

- A) DDQ and SeO_2
- B) SeO₂ and DDQ/HClO₄
- C) Lead tetra acetate and SeO₂
- SeO₂ and LiAlH₄

41. In the following species,

- A) P is aromatic, Q is antiaromatic, R is homoaromatic
- B) P is aromatic, Q and R are antiaromatic
- C) P is homoaromatic, Q is aromatic, R is antiaromatic
- D) P is antiaromatic, Q is aromatic, R is homoaromatic
- 42. The reaction,

- A) allowed only photochemically
- B) allowed only thermally
- C) catalysed by OH
- D) catalysed by H⁺

43. Identify Q in the following sequence:

$$\begin{array}{c|c}
\hline
CHBr_3 \\
Alc.KOH
\end{array}
P
\begin{array}{c}
AgNO_3 \\
H_2O
\end{array}$$

$$\begin{array}{c}
A \\
Br
\end{array}$$

$$\begin{array}{c}
CHBr_3 \\
H_2O
\end{array}$$

$$\begin{array}{c}
A \\
Br
\end{array}$$

$$\begin{array}{c}
C \\
Br
\end{array}$$

$$\begin{array}{c}
C \\
Br
\end{array}$$

$$\begin{array}{c}
C \\
Br
\end{array}$$

44. Identify the product Y of the reaction,

$$CH_2$$
 CH_2 CH_2

45. What is P in the following reaction?

$$CH_3$$
 CH_3
 CH_3

46.		contains certains/process. Matc. List I				ist II co List II		ssociate	d
	a Sano	dmeyer reaction	1		1. Acy		-		
		del Crafts react			2. Carl				
		ner Tiemann re				ocation	า		
		s rearrangemen				radical			
		Č							
	,	a-4, b-3, c-1, d a-3, b-4, c-2, d				,	a-3, b-4, c-1, a-4, b-3, c-2,		
47.	-	um well infrared	d photo	detecto					
	A)	WS ₂ layer			B)	MoS_2	•		
	C)	NbS ₂ layer			D)	GaAs	layer		
48.	Materi A)	al in nanophase Zr0 ₂	e emplog	yed in t ZnO	he man	ufacture C)		-	is BaTiO ₃
	,	- 2	,			- /		,	3
49.		of the followin							
	A)	p-amino benzo			B)	Glycin			
	C)	Glutamic acid			D)	Sulpha	milic acid		
50.	The in	ntermediate never formed during chain growth polymerization is							
50.	A) Carbocation				B)	Free r		711 13	
	C)	Carbene			D)	Carbai			
	-,				-,				
51.	1. Alpl 2. Dipe	by the correct state that pinene contact the pinene is (±) line in the pinene is a bicyc	ins exononene	cyclic d	louble b	ond			
		ma sterol is cor		-	ed from	soya b	ean oil		
	4.	1 2 0 4 1	D)	1 2 0	4 1	C)	2021	D)	1.0.2.1
	A)	1, 2 & 4 only	В)	1, 3 &	4 only	C)	2 & 3 only	D)	1 & 3 only
52.	Which chloro	of the followin	ıg can b	e used a	as the st	tarting r	naterial for the	prepara	ation of
	A)	o-Chloraniline	;		B)	p-Chlo	raniline		
	C)	m-Chloraniline	e		D)	o-Chlo	oroacetanilide		
53.	Quant	rum dat nangari	zatola oa	n maag	ura batı	woon			
33.	A)	tum dot nanocry 8-10 nm	B)	2-6 nm		C)	5-10 nm	D)	2-10 m
	11)	o ro min	D)	2 0 1111	1	C)	3 10 mm	D)	2 10 111
54.	Anthra	cene can only b	be accor	mmodat	ted in				
	A)	α-cyclodextrin	1		B)	γ-cycl	odextrin		
	C)	β-cyclodextrin	1		D)	crown	ethers		

55.	$\pi - \pi$	Stacking intera	action is	not pos	sible ir	ı						
	A)	cyclodextrins	}	-	B)	cyclo	phanes					
	C)	cryptands			D)	calixa	•					
56.	Photo	lytic conversion	n of org	anic nitr	iles int	o nitros	so alcohol is	known as	S			
	A)	Barton reaction			B)		reaction					
	C)	Paterno reac	tion		D)	Birch	reaction					
57.	The re	eaction,										
	<u> </u>	>CH₂				СU						
		<u>H</u>	eat <u></u>			CH ₂						
	0~	∠CH ₂			\checkmark)						
	Ċ	Si(CH ₃) ₃			OSi(CH ₃) ₃						
	is call	0 0			001(0.13/3						
	A)	[3,3] sigmatro	onic shif	A	B)	Cone	e rearrangeme	ent				
	C)	Claisen- Cop	-		/	1 0						
58.	8. The spinels MgFe ₂ O ₄ and MgAl ₂ O ₄ respectively are											
	A) 1	Inverse & No			B)	-	se & Inverse					
	C)	Normal & N	ormal		D)	Norm	al & Inverse					
59.	In the X-ray diffraction pattern for a body centered cubic (b.c.c) lattice, hkl can have											
	A)	any value	•		B)		values	,				
	C)	even values			D)	h + k-	+ 1 even					
60.	The m	umber of micro	states a	ssociate	d with	the d ² c	onfiguration	is				
	A)	45	B)	54		C)	2	D)	90			
61.		ding to Huckel	Molecu	ıloar Or	bital(H	MO) tr	eatment, the	resonance	e energy of			
	1,3-00 A)	Zero	B)	4.472	ß	C)	0. 472β	D)	$4\alpha + 4.472 \beta$			
	A)	ZCIO	D)	7.7/2	Р	C)	0. 472p	D)	4α + 4.472 p			
62.	The m	nean free path (λ) of a g	gas mole	ecule							
	A)	λαΡ	B)	λ α 1	/P	C)	$\lambda \alpha 1/T$	D)	$\lambda \alpha T^2$			
63.	The se	election rule fo	r pure ro	otational	Rama	n specti	rum of a diat	omic mol	ecule is			
	A)	$\Delta J = 0, \pm 1$	B)	$\Delta J = \pm$	1	C)	$\Delta J = \pm 2$	D)	$\Delta J = 0, \pm 2$			
64.	The p	henomenon of	size-tun	eable lig	ght emi	ssion is	s exhibited by	ý				
	A)	A) Silica nanoparticles B)					Iron oxide nanoparticles					
		C) Quantum dots D				Metal nanoparticles						
	-,		-		<i>- ,</i>			-				

65.	During A)	g tetragonal elong $T_{\rm d}$	gation 3)	, the point C_{4v}	grou	p of an C)	octahedral $D_{4\mathrm{h}}$	complex c	hanged to $D_{lpha m h}$
66.		pound with mole ound is most likel			C ₈ H ₈ O	has st	rong IR bar	nd near 169	00 cm-1.The
	A)	Ph-CH ₂ CHO		В	3)				
	C)		—-ОН	D))	Ph-CC)- CH ₃		
67.		ding to the Wood ing molecule is	lward-	Fieser rul	es, the	e theore	etical value	of λ_{max} for	the
	A)	264 nm H	3)	254 nm		C)	269 nm	D)	259 nm
68.	In the A) B) C) D)	one singlet One doublet (into One triplet (into	ntensit ensity	y 1: 1) 1: 2: 1)	olecul	e, there	e will be		
69.		mass spectrum o				ontain c	one chlorine	e atom, The	e relative
	A)	ties of M and M- 1: 1 I	F2 pea 3)	3: 1	;	C)	1: 3	D)	35: 37
70	The en A) B) C) D)	thalpy change (Δ ΔG versus recip ΔG versus temp [ΔG/T] versus to [ΔG/T] versus r	orocal peratu emper	of temper re rature	rature		the slope in	a plot of	
71.		es of an ideal gas stropy change wil		nd reversib	oly fro	om a vo	olume of 8 of	dm^3 to 80 c	lm³ at 27°C.
	A)	19.15 J/K		В	/	38.3 J			
	C)	Zero		D	<i>'</i>)	-38.3	J/K		
72.		istical mechanics							

73.	The co	injugate acid ar $[PO_4]^{3-}$ and $[H_2PO_4]^{-}$ and	nd base of H_2PO_4] $^ [PO_4]^{3-}$	[HPO ₄] ^{2–} are B) D)	e, respectively. H ₃ PO ₂	ctively 4 and $[H_2PO_4]^3$ 4 and $[PO_4]^{3-}$	-	
74.		te constant of a fe of the reaction 10 minutes	on if the in		ration c			mol lit ⁻¹ ?
75.	_	oolymer sample stively obtained Osmometry an Viscometry an	l by nd viscom	etry		ght average m	olar ma	ss can be
	C) D)	Light scatterin Osmometry an	_					
76.		of the following $O_{2}(g) + O_{2}(g) = 0$	_			•		
	A) B) C) D)	Increase in T : Increase in T : Increase in P Increase in	shift the eashift the eashift the e	quilibrium to quilibrium to quilibrium to	left right left			
77.	The movement of the dispersion medium under the influence of an external electric field is termed as							
	A) C)	Sedimentation Electrophores	-	B) D)		o osmosis ning potential		
78.		irst order react ature (1/T) has		of logarithm	of rate	constant (k)	against r	reciprocal of
	A)	Ea/2.303R	B) -2	2.303R/Ea	C)	2.303R/Ea	D)	-Ea/2.303R
79.		ling to Michae substrate conce		-	-	catalyst, the M	Iichaelis	constant K _m
	A)	V_{max}	B) <u>v</u>	$\frac{max}{2}$	C)	$\frac{Vmax}{4}$	D)	V^2_{max}
80.	additio	lation of 100m on of 0.25g of X r of X?			_		-	•
	A)	0.25	B) 2	250	C)	2.5	D)	25
81.	Under A) B) C) D)	Asymmetry and Electrophetic Asymmetry end	ffect vanis nd electrop and visco	hes phoretic effects war	ct vanis	hes	strong e	electrolyte
82.	The Bo	OD is a water of Between 5-10 Greater than 1) ppm	ameter. Drin B) D)	Less t	ater should ha han 5 ppm en 10- 20 ppn		

83.	Atomic Force Microscopy (AFM) belongs to which type characterization?											
	A) C)	Optical Probe Methods Scanning Probe Methods	B) D)	Electron Probe Meth Spectroscopic Metho								
84.	In lic A) C)	quid ammonia solvent, the comp Acid and base respectively Both as acids	-	NaNH ₂ and NH ₄ Cl be Base and acid respect Both as bases								
85.		thermo analytical method where eference material is measured a TG B) DTA				nalyte and						
86.		colloidal purification, dialysis is eased by: Application of external magnature Application of external elect Increase in osmotic pressure Decreasing the pore size of the colloidal purification.	netic fie ric field	eld I	d of dia	lysis can be						
87.	Aque A) B) C) D)	Linear with a positive gradie Non-linear An exponential curve	KMnO ₄ solutions are purple. A plot of absorbance against concentration is: inear with a positive gradient on-linear n exponential curve inear with a negative gradient									
88.	In po A) C)	plarography, Ilkovic equation is Half-wave potential Residual current	used to B) D)	o calculate Diffusion current Kinetic current								
89.	Which A) B) C) D)	Low energy photons are used Low energy photons are used X-rays are used to ionize the X-rays are used to ionize the	d to ion d to ion core el	ize the core electrons ize the outer electrons ectrons								
90.	Nanc A) C)	owires represent which type of a 0-D nanomaterials 2-D nanomaterials	nanoma B) D)	terials? 1-D nanomaterials 3-D nanomaterials								
91.		ntial difference between the fixe osite charges is called Donnanpotential Zeta potential	B) D)	ged layer and diffused Diffusion potential Redox potential	layer ha	ving						

92. Match List I with List II

List I (amino acids)	List II (structure)
a. Alanine	1. HO NH ₂
b. Cysteine	2. HO = NH ₂
c. Valine	3. H ₂ N OH
d. Leucine	4. H ₂ N _{III} O OH

A) a-2, b-1, c-3, d-4

B) a-4, b-2, c-3, d-1

C) a-3, b-4, c-1, d-2

- D) a-3, b-4, c-2, d-1
- 93. The N-terminal amino acid of a polypeptide can be detected by using the reagent
 - A) 2,4-dinitroaniline
- B) 2,4-dinitrobenzoic acid
- C) 2,4-dinitrophenyl hydrazine D)
- 2,4-dinitro fluorobenzene
- 94. The fine and hyperfine EPR spectrum of the aqua ion $[Mn(H_2O)_6]^{2^+}$ has (I of Mn = 5/2)
 - A) 6 and 30 lines
- B) 5 and 30 lines
- C) 3 and 36 lines
- D) 6 and 36 lines
- 95. The Sulphur-nitrogen compound that exhibits colour change with temperature is
 - A) $(SN)_x$
- S_3N_3
- C) S_4N_4
- S_2N_2

- 96. The Vaska's complex is
 - A) $[Ir(CO)Cl(PPh_3)_2]$
- B) $[Ir(CO)_2Cl(PPh_3)_2]$
- C) $[Rh(CO) Cl(PPh_3)_2]$
- D) $[RhCl(PPh_3)_3]$
- 97. Which of the lanthanide ion has highest difference between observed and calculated magnetic moments?
 - A) Gd^{3+}
- B) Eu³⁺
- C) Ce^{3+}
 - D) Lu^3

98.	Which of the following statement is correct about the structure of PCl ₃ F ₂											
	A)	The fluorin	e atoms j	orefers to	occup	by the p	lanar positio	n				
	B)	The fluorin	e atoms	orefers to	occup	by the a	xial position					
	C)	One fluoring	ne is axia	and the	other	is plana	r					
	D)	None of the										
99.	In the	e given reaction HXeO ₄ ⁻ + (O						
	A)	$\mathrm{XeO_6}^{ ext{4-}}$	B)	XeO ₆ ²	2-	C)	XeO_4^{2-}	D)	XeO ₄ ⁴ -			
100.	Plasto	ocyanin is a b	lue coppe	er protei	n. The	intense	colour is att	ributed to				
	A)											
	B)											
	C)											
	D)	Metal to lig	gand char	ge trans	fer fror	n Cu						
101.	The E	The Bhor effect is										
	A)	pH depende		•	_							
	B)	Concentrat										
	C)	Solvents de										
	D)	Temperatu	re depen	dence sh	own b	y Hemo	oglobin					
102.	The t	The term IC ₅₀ stands for										
	A)											
	B)											
	C)											
	D)	D) Half maximal inhibitory concentration										
103.	99m Tc is an isotope used in radiopharmaceuticals. It is produced by β -particle emission											
	from	an isotope X.	What is	X?								
	A)	⁹⁹ Mo	B)	⁹⁹ Ru		C)	¹⁰³ Rh	D)	¹⁰³ Nb			
104.	The d	lrug which is	prepared	by the a	cetylat	ion of 2	2-hydroxy be	nzoic acid	l is			
	A)	Salol			B)	Acet	aminophen					
	C)	Phenacetin			D)	Aspi	rin					
105.	Whic	h of the follo	wing acts	s as a sin	k for c							
	A)	Algae			B)		oorganisms p	present in	the soil			
	C)	Haemoglob	oin		D)	Gree	n plants					
106.	Which of the following forms nematic type liquid crystal?											
	A)	Ethyl p-azo			B)		l p-azoxy cin	namate				
	C)	Cholestery	l formate		D)	p-Az	oxy anisole					

- 107. Identify the correct statement about DEPT 90 ¹³ C NMR spectrum
 - A) Produce signals for all protonated carbon atoms
 - B) CH and CH₃ peaks are positive and CH₂ peaks are negative
 - C) CH and CH₃ peaks are negative and CH₂ peaks are positive
 - D) Only CH peaks are visible
- 108. The Birch reduction product of benzoic acid is

109. The most stable conformation of *cis*-1,3-dimethyl cyclohexane is

- 110. The Reimer-Tiemann reaction proceeds through the formation of:
 - A) Carbonium ion
- B) Transition state

C) Carbene

- D) Dichlororo carbene
- 111. The following reaction is an example for

- A) Wolff rearrangement
- B) Favorskii rearrangement
- C) Steven's rearrangement
- Wagner-Meerwein rearrangement
- 112. The Winkler method is used to determine
 - A) Dissolved oxygen (DO)
- B) BOD

C) COD

- D) Total organic pollutants
- 113. Inter system crossing (ISC) is essential for which of the following photophysical process?

D)

- A) Fluorescence
- B) Internal conversion
- C) Vibrational cascade
- D) Phosphorescence

114. The transformation given below is achieved by

- A) H₂O₂/NaOH
- B) Alkaline KMnO₄
- C) I₂/silver acetate
- D) m-CPBA
- 115. The nucleic acid DNA contain the pyrimidine bases
 - A) cytosine and adenine
- B) cytosine and thymine
- C) cytosine and guanine
- D) cytosine and uracil
- 116. The reaction of PhMgBr with teritiary butanol results in the formation of
 - A) Benzene

- B) Phenol
- C) Tertiary butyl benzene
- D) Tertiary butyl methyl ether
- 117. Hydroboration reaction is
 - A) StereoselectivelyMarkownikoff addition and stereo specifically *syn*-addition
 - B) Stereoselectively anti-Markownikoff addition and stereo specifically syn-addition
 - C) Stereo specifically Markownikoff addition and stereo selectively syn-addition
 - D) StereoselectivelyMarkownikoff addition and stereo specifically anti-addition
- 118. Starch contains of amylase and of amylopectin
 - A) 20%, 80%
- B) 30%, 70%
- C) 80%.20%
- D) 70%, 30%

119. The following terpene can be considered as a

- A) Bicyclic monoterpene
- B) Bicyclic sesquiterpene
- C) Bicyclic diterpene
- D) Bicyclictriterpene
- 120. The EDX- Spectrum is a plot of emitted X-ray intensity against its
 - A) Energy
- B) Wavelength
- C) Frequency
- D) Amplitude